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Single-variable realisation of the SU( 1 , l )  spectrum generating 
algebra and discrete eigenvalue spectra of a class of potentials 

S Brajamani and C A Singh 
Department of Physics, Manipur University, Canchipur, lmphal 795 003, India 

Received 1 September 1989 

Abstract. A wide range of operators can be expressed in terms of the generators of the 
SU(1, 1) algebra, the spectral properties of which are well known. We attempt to find a 
realisation of the algebra in its most general form and thus evolve a unified approach to 
the problem of finding the spectra of Hamiltonians amenable to the technique rather than 
taking each case separately. We extend the analysis to obtain the spectra of potentials 
whose coordinate dependence is implicit. 

1. Introduction 

Numerous instances of fruitful applications of group theoretical methods, particularly 
in atomic and nuclear physics and the physics of fundamental interactions, have 
encouraged us to pursue this work. 

We shall be concerned with the method of obtaining the eigenvalues of a certain 
class of dynamical systems by way of the SU(1, 1) Lie algebra. The non-relativistic 
single-particle Hamiltonian system is one such, and we have chosen to study this. 
Realisation of the generators of SU(1, 1) algebra in the function space of a single 
variable in terms of linear operators containing up to second-order derivatives have 
been used to find the spectrum of single-particle Hamiltonians with a class of one- 
dimensional potentials and three-dimensional central potentials [ 1-51, Our attempt is 
to find such a realisation of the generators of SU(1 , l )  in the most general form and 
to evolve a unified approach to the problem of finding the eigenvalue spectra of 
Hamiltonians amenable to the technique. In doing so, we are able to show that such 
a realisation is unique up to a similarity transformation and a transformation of the 
variable. The uniqueness supplements Lie’s theorem [ 6 ] ,  namely that the only finite- 
dimensional Lie algebras which can be realised in terms of vector fields in one variable 
are SL(2, R) and its subalgebras and the corresponding realisation is unique up to a 
change of variable. 

More than reproducing the results that had been obtained earlier, this approach 
leads us to a class of what we call ‘implicit potentials’, by which we mean a potential 
function V =  V ( ~ ( X ) ) ,  where 4 = d(x)  is a function of the position variable x defined 
through an equation but cannot be expressed explicitly in terms of x. 

2. Second-order realisation of SU(1,l)  algebra 

We attempt to realise the SU(1, 1) Lie algebra 

[r, ,  r,] = -iT, V2 , r31 = ir, [r3, r,I =ir2 (2.1) 
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in terms of second-order derivative operators in a single variable x. We write 
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d2 d 
dx  dx 

rl  = al(x)  ?+ bl(x)  -+ c,(x) 

A transform tion of variable can be used to redu 
non-zero constant. We set 

a , ( x )  = 1. 

A similarity transformation 

3 a prede ermined 

( 2 . 3 )  

can then be used to eliminate the first-order derivative term in one of the Ti .  We set 

b, = 0. ( 2 . 5 )  

The conditions for realising the algebra ( 2 . 1 )  are then 

a i = a ; = O  1 i bj  = -- 
2 a* 

b;=-- 
2 

i 
2 

c l  - a C‘I - b c’ - a b’ - a  b’ - _ -  
3 1 3 I - + *  3 2  2 1 -  

2(a3c>-a2c9-(b2b;- b3bi) = O  

The general solution to this set of equations is 

(a3c; - a 2 c 9  + ( b3ci - b2ci) = -ic, , 

az  = CY a3 = P 
1 b - - _  i 

b2=--P(  2 X +  Y) 3 -  2 a ( x + y )  

where y and A are arbitrary constants; and a and /3 are constants subject to the condition 

p 2 - C Y 2 =  1 .  (2.8) 
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Without loss of generality, we set y = 0 to get 
d2 A x2 

dx’ x 16 
r, =-+,+- 

d2 A x‘) 

d2 A x2) 
( f d: a) 
( f d: 1) 

T2=sinh e -+,-- +cosh e --X--- 

r ,=cosh 6 -+--- +sinh e --X--- 

(dx2 x 16 

(dx2 x2 16 

where 0 is an arbitrary constant. The Casimir invariant is 

(2.9) 

(2.10) 

Now, to get the most general form of the realisation we invoke the similarity transforma- 
tion (2.4) and the transformation of the variable implied in (2.3). The former leads to 

3 A  r2 E r: - r; - r; = - - - - 
16 4 ‘  

d2 d X 2  

dx r, = s + p ( x )  -+q(x)+- 16 

i d i  
16 2 dx 4 

i d i  
dx 

dx 16 --x---( l+xp(x))  2 dx 4 

r , = s i n h e  --x---(l+xp(x)) 

where p(x)  is an arbitrary differentiable function and 

P(X) dp(x) q(x)=-+&- t,. 

X = 4(Y) 

4 dx x 
To restore the variable transformation we simply put 

where y is the new variable and 4 ( y )  is a differentiable function of y. This gives 

d2 d 4‘(Y) r, = u * ( ~ )  >+ u ( ~ )  -+ w(y)+- 
dY dY 16 

16 

where 

u’(y) P(Y) =-- 
U ( Y )  

U ( Y ) = -  4YY) 
P2(Y) U ( Y )  A 

w ( y )  =-+-$(y)+- 
4 2 i 2 ( Y ) ’  

1 

(2.12) 

(2.13) 

(2.14) 
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Equation (2.13) is the most general form of the realisation of the SU(1, l )  algebra 
(2.1) in terms of second-order derivative operators in a single variable y. This realisation 
is described in terms of two arbitrary differentiable functions 4 ( y )  (or u(y))  and u(y) 
(or p(y)) which is a manifestation of the invariance of the algebra under variable 
transformations and similarity transformations, and two constants 0 and A. Of the 
two constants, A has the significance of giving the Casimir invariant of the realisation 
(2.10) but 0 has no physically significant meaning. This inessential constant may be 
got rid of by making a rotation about the 1 axis in group space 

r l  + e-f01'ir, elel I = rl 

T r  -$ e-'H1'lI'z e'"'I = cosh err - sinh er, 
r3 + e-'"'lr, eiO'.l = cosh er3 - sinh er,. 

We may now recast the realisation (2.13) in its equivalent form 

r , = u 2 ( y ) 7 + ~ ( y ) - +  d2 d w(Y)+- 4'(Y) 
dY dY 16 

(2.15) 

d' d +'(VI r, = ~ ' ( y )  7 +  u ( ~ )  -+ w ( y )  -- 
dY dY 16 ' 

This realisation is canonical in the sense that these operators are form invariant 
under variable transformations and similarity transformations. Any other realisation 
in second-order derivative operators in a single variable can be obtained as a special 
case of these. For example, taking 4 (y )  = y and u(y) = 0 we get the realisation of [l]. 

3. Unitary irreducible representation of SU(1,l)  Lie algebra and eigenvalues of 
differential operators 

Unitary irreducible representations ( U I R )  of the SU(1 , l )  Lie algebra in which the 
compact generator r3 is diagonal can be classified according to the eigenvalues of r2 
and r3 [4,7,8]. Denoting by q and m the eigenvalues of T2 and r3, respectively, we 
can write 

q = j ( j +  1) (3.1) 

m = E o + N  (3.2) 
where Eo is a real number and N =0,  +1, *2,. . . . The U I R  of the SU(1 , l )  algebra are 
classified into four series. 

(a) Continuous principal series, 9JP( q, Eo) .  Here j = -$+ip where p is real and 
q>$  and 

m = E o ,  Eo* 1, E0*2,. . . . (3.3) 
(b) Continuous supplementary series, 5Bd,(q, Eo).  Here \ j+fl($-IEol,  j and Eo are 

(3.4) 

real, and 

m = E o ,  E O * l ,  E0*2 , . . . .  
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(c) Discrete series, 9 + ( j ) .  Here j is real and j < 0, and Eo = -j, and 

m = - j , - j + l , - j + 2  , . . . .  (3.5) 

m = j , j - l , j - 2 , .  . . . (3.6) 
In the discrete series 9 + ( j )  the eigenvalue spectrum of r3 is bounded from below 

Now, the differential operator 

(d) Discrete series 9 - ( j ) .  Here j is real and j < 0, and Eo = j ,  and 

while in 9-( j) it is bounded from above. 

where b # 0 is a real constant and U, v, w, 4 are related through (2.14), can be put into 
the form 

= ( 4 - 8 b ) r l  - (;+ 8b)T3. 

And the eigenvalue equation 

T @ ( Y )  = W W Y )  (3.8) 
can be transformed by a suitable rotation about the 2 axis to the eigenvalue equation 
[41 

or to the equation 

(3.9) 

(3.10) 

The former gives continuous eigenvalues as r, is the non-compact generator while in 
the latter case we get a discrete spectrum. This (latter) case yields the eigenvalue 

/L = 4 f i ( E o +  N )  

the real number Eo depending 
Casimir eigenvalue 

3 A  
16 4 

j ( j +  1)  = ---- 

or 
j = -;+= 

N is an integer (3.11) 
on the class of U I R  of the algebra, and hence on the 

real for A < a .  (3.12) 
If j is real and negative, the spectrum of p belongs to the discrete class 9*(j) with 
Eo= Fj. Hence for 

- ; < / + < a  and j = -L(i 2 k 4 - A )  

and for 

A G - 3  and j = -;(I $6) 
we have 

(3.13) 

p = * 4 a ( N - j )  N = 0 , 1 , 2  , . . . .  (3.14) 
The upper (lower) sign in (3.14) holds for a spectrum bounded from below (above). 
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4. Schrodinger eigenvalue problems solvable through the UIR of SU(1,l)  algebra 

Eliminating the first-order derivative term in the eigenvalue equation (3.8), namely 

and dividing by U‘, we have 

This equation reduces to the Schrodinger eigenvalue equation 

if the non-derivative term in the operator in (4.1), to be denoted by Q ( y )  as 

(4.3) 

can be reduced to the form 

Qb) = 2(E - V(Y>)  (4.4) 
by a suitable choice of the function 4 ( y )  or u ( y ) .  This will enable us to find the 
eigenvalue E in the Schrodinger equation (4.2). There are seven possible cases in 
which the last term in expression (4.3) can yield a constant to be identified as 2E, 
thereby leading to the desired form of Q ( y ) .  These cases correspond to specific 
properties of the function p ( y )  defined through a first-order differential equation. 
Below, we elaborate, considering only the discrete spectrum. 

(a) For the choice 

4 ’ ( y )  = constant i.e. 4 ( y )  = y  (4.5) 
we find 

That is, for a potential function V ( y )  of the Kratzer [8] type 

2 V ( y )  = Ay-2 + By2 B>O 

the Schrodinger equation (4.2) has the eigenvalue spectrum 

E = -fp = * 2 a (  N +izt fa). 
(b) For the choice 

d’(v) = (2d ) r ’  i.e. 4 ( y )  = 6 
we find 
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That is, for the potential function 
K L  

V(y) =--- 
Y Y' 

the discrete spectrum of E is obtained as 
b 1 p2 E = --= _ -  
8 8 16(N-j ) '  

K 2  
2( N + 4 * $J8ZTi)2 ' 

= -  

(c) Next, we choose 4 ( y )  to satisfy the equation 

4 Y Y )  = - 4 4 Y )  
where a is a positive constant. With this choice 

+(y)  = e-a-" 

Q ( y ) = a 2 ( A  -a ) -a2 (b  e-4"y+p 
and 

So, for the Morse potential 

we obtain, setting b = 2 A / a 2  and p = -2B/a2,  the eigenvalues 
A, B>O V(y) = A e-4a? - B e-2"Y 

N = 0 ,  1 , 2 , .  , . 
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(4.9) 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

where A has been determined from (3.14) with the lower sign, as /1. is negative ( B  > 0). 
(d) For + ( y )  satisfying the equation 

1 
4 Y Y )  =- @Tl (4.14) 

we get 

Imposing the condition p = b, the above reduces to the form of (4.4) with 

and 
E = -'b 2 (4.15) 

(4.16) 
A 

V ( y ) =  

Equations (3.14) and (4.15) together with the condition p = b give 
E = -8( N - j)' 

= 8( N + f * i f i ) 2  N = 0, 1,2,  , . , (4.17) 
the lower sign being applicable only for -:<A si. In other words, for a potential of 
the form of (4.16) where 4 ( y )  is a solution of (4.14) the Hamiltonian H =  
-Id 1 2  /dy2+ V(y) has the eigenvalue spectrum given by (4.17). 
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The above results and few other choices of +‘(y )  are collected in a tabular form 
in table 1. In cases (a), (b) and (c), the potentials can be expressed in terms of the 
position variable y.  The potential function in (4.6) is the Kratzer potential [9] encoun- 
tered in molecular physics. In nuclear theory this type of potential occurs in the 
two-rotor model of deformed nuclei [lo]. The special case A = O  yields the one- 
dimensional harmonic oscillator potential with force constant k = B for which the 
allowed spectrum is given by E = 2 f i (  N ++*a )  which can also be written in the usual 
form E,, = w ( n  + +), n = 0,1,2,  , . , , w being the classical frequency f i , ( h = m = 1). 

The three-dimensional isotropic harmonic oscillator also falls under the case (a), 
with A = 1( I+  1) and B = k giving energy eigenvalues E = f i ( 2 N + 1 +  1 kf), the lower 
sign inside the parenthesis applicable only for I = O  (see (3.13) and note that A = 
- f l ( I +  1)). With n = 2 N +  1 the energy eigenvalues can be written as E,, =; w ( n  +$) for 
1 # 0 and E,, = w (  n +f) for 1 = 0. Here, the case 1 = 0 coincides with that of the linear 
harmonic oscillator, implying the existence of an eigenvalue E , = ; I O  even for the 
three-dimensional oscillator, contrary to the well known result [ l l] .  In spite of the 
subtle group theoretical analysis of the quantum oscillator problem [ 1 2 ] ,  we do not 
see any simple way of ruling out this eigenvalue. However, on the elementary level 
of non-relativistic quantum mechanics it is easily ruled out because the wavefunction 
corresponding to this eigenvalue is not normalisable because of a pole at the origin. 

In case (b) the potential function (4.9) has two terms-the first term corresponds 
to an inverse square force and the second to an inverse cubic force. It thus covers the 
generalised Kepler problem including the non-relativistic hydrogen atom. With K = 
-Ze2 and L = t l ( l + l )  the potential V ( y )  is the effective Coulomb potential of the 
hydrogen-like atom and the discrete energy spectrum can be written as E,, = 
- Z 2 e 4 / ( 2 n 2 )  where n = N +  I +  1, a positive integer. Degeneracy of each level is also 
correctly reproduced. The potential function (4.12) is the well known Morse potential 
[ 131 when B = 2A. 

In cases (d) and (e)-(g) (given in table 1) the equations for $ ( y )  cannot be solved 
to give 4 in terms of y. For example, (4.14) has the solution 

which cannot be inverted to give 4 in terms of y. Such potentials we call, somewhat 
arbitrarily, ‘implicit potentials’ though the term may not be quite appropriate. We fail 
to recognise physical significance, if any, of such potentials except for a vague hunch 
that the equation for 4 ( y )  might remotely be some sort of constraint or condition for 
non-relativistic string-like systems having some internal structure. It is beyond the 
purview of the present study to delve into this remote possibility. We present these 
cases simply because they emerge in the unified approach we have adopted. At the 
most, these rather murky cases are exercises in which we have solutions looking for 
physical problems. 

Before we conclude this paper we note that we have confined ourselves to discrete 
spectra. It may be noted that analysis of scattering states for the one-dimensional 
Morse potential and the Poschl-Teller potential [ 141 by constructing two-dimensional 
realisations of SU(1 , l )  on the unit hyperboloid had been carried out in [15]. 

y = f+m+i sinh-’ + 
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